Investigation of the Acetylation Mechanism by GCN5 Histone Acetyltransferase

نویسندگان

  • Junfeng Jiang
  • Junyan Lu
  • Dan Lu
  • Zhongjie Liang
  • Lianchun Li
  • Sisheng Ouyang
  • Xiangqian Kong
  • Hualiang Jiang
  • Bairong Shen
  • Cheng Luo
چکیده

The histone acetylation of post-translational modification can be highly dynamic and play a crucial role in regulating cellular proliferation, survival, differentiation and motility. Of the enzymes that mediate post-translation modifications, the GCN5 of the histone acetyltransferase (HAT) proteins family that add acetyl groups to target lysine residues within histones, has been most extensively studied. According to the mechanism studies of GCN5 related proteins, two key processes, deprotonation and acetylation, must be involved. However, as a fundamental issue, the structure of hGCN5/AcCoA/pH3 remains elusive. Although biological experiments have proved that GCN5 mediates the acetylation process through the sequential mechanism pathway, a dynamic view of the catalytic process and the molecular basis for hGCN5/AcCoA/pH3 are still not available and none of theoretical studies has been reported to other related enzymes in HAT family. To explore the molecular basis for the catalytic mechanism, computational approaches including molecular modeling, molecular dynamic (MD) simulation and quantum mechanics/molecular mechanics (QM/MM) simulation were carried out. The initial hGCN5/AcCoA/pH3 complex structure was modeled and a reasonable snapshot was extracted from the trajectory of a 20 ns MD simulation, with considering post-MD analysis and reported experimental results. Those residues playing crucial roles in binding affinity and acetylation reaction were comprehensively investigated. It demonstrated Glu80 acted as the general base for deprotonation of Lys171 from H3. Furthermore, the two-dimensional QM/MM potential energy surface was employed to study the sequential pathway acetylation mechanism. Energy barriers of addition-elimination reaction in acetylation obtained from QM/MM calculation indicated the point of the intermediate ternary complex. Our study may provide insights into the detailed mechanism for acetylation reaction of GCN5, and has important implications for the discovery of regulators against GCN5 enzymes and related HAT family enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleosome competition reveals processive acetylation by the SAGA HAT module.

The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf2...

متن کامل

Gcn4 activator targets Gcn5 histone acetyltransferase to specific promoters independently of transcription.

Histone acetylation correlates well with transcriptional activity, and histone acetyltransferases (HATs) selectively regulate subsets of target genes by mechanisms that remain unclear. Here, we provide in vivo evidence that the yeast transcriptional activator Gcn4 recruits Gcn5 HAT complexes to selective promoters positioned in natural or ectopic locations, thereby creating local domains of his...

متن کامل

Does gene length play a role? — Transient regulation of Gcn5 histone acetyltransferase under stress conditions

Gcn5 is a histone modification enzyme that performs its function by global or locus-specific histone acetylation. It is known that Gcn5 involves in stress responses in yeast. Our previous data showed that Gcn5 relocalized to the long genes under IM KCl stress conditions in yeast. Here we use a stress adaptation and recovery model and performed 52 microarrays. By investigating the gene regulatio...

متن کامل

Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression.

We previously showed that Arabidopsis thaliana histone acetyltransferase TAF1/HAF2 is required for the light regulation of growth and gene expression, and we show here that histone acetyltransferase GCN5 and histone deacetylase HD1/HDA19 are also involved in such regulation. Mutation of GCN5 resulted in a long-hypocotyl phenotype and reduced light-inducible gene expression, whereas mutation of ...

متن کامل

A Phytophthora Effector Manipulates Host Histone Acetylation and Reprograms Defense Gene Expression to Promote Infection

Immune response during pathogen infection requires extensive transcription reprogramming. A fundamental mechanism of transcriptional regulation is histone acetylation. However, how pathogens interfere with this process to promote disease remains largely unknown. Here we demonstrate that the cytoplasmic effector PsAvh23 produced by the soybean pathogen Phytophthora sojae acts as a modulator of h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012